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ABSTRACT
Compositional proof systems not only enable the stepwise
development of concurrent processes but also provide a ba-
sis to alleviate the state explosion problem associated with
model checking. An assume-guarantee style of specification
and reasoning has long been advocated to achieve compo-
sitionality. However, this style of reasoning is often non-
trivial, typically requiring human input to determine appro-
priate assumptions. In this paper, we present novel assume-
guarantee rules in the setting of finite labelled transition
systems with blocking communication. We show how these
rules can be applied in an iterative and fully automated
fashion within a framework based on learning.

Keywords
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1. INTRODUCTION
Our work is motivated by an ongoing project at NASA Ames
Research Center on the application of model checking to the
verification of autonomous software. Autonomous software
involves complex concurrent behaviors for reacting to exter-
nal stimuli without human intervention. Extensive verifica-
tion is a pre-requisite for the deployment of missions that
involve autonomy.

Given a finite model of a system and of a required prop-
erty, model checking can be used to determine automatically
whether the property is satisfied by the system. The limi-
tation of this approach, commonly referred to as the “state-
explosion” problem [7], is that it needs to store the explored
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system states in memory, which may be prohibitively large
for realistic systems.

Compositional verification presents a promising way of ad-
dressing state explosion. It advocates a “divide and con-
quer” approach where properties of the system are decom-
posed into properties of its components, so that if each com-
ponent satisfies its respective property, then so does the en-
tire system. Components are therefore model checked sepa-
rately. It is often the case, however, that components only
satisfy properties in specific contexts (also called environ-
ments). This has given rise to the application of assume-
guarantee reasoning [16, 21] to model checking [11].

Assume-guarantee1 reasoning first checks whether a compo-
nent M guarantees a property P , when it is part of a system
that satisfies an assumption A. Intuitively, A characterizes
all contexts in which the component is expected to operate
correctly. To complete the proof, it must also be shown that
the remaining components in the system, i.e., M ’s environ-
ment, satisfy A. Several frameworks have been proposed [16,
21, 6, 14, 24, 15] to support this style of reasoning. However,
their practical impact has been limited because they require
non-trivial human input in defining assumptions that are
strong enough to eliminate false violations, but that also
reflect appropriately the remaining system.

In previous work [8], we developed a novel framework to per-
form assume-guarantee reasoning in an iterative and fully
automatic fashion; the approach uses learning and model-
checking. To check that a system made up of components
M1 and M2 satisfies a property P , our framework automat-
ically learns and refines assumptions for one of the compo-
nents to satisfy P , which it then tries to discharge on the
other component. Our approach is guaranteed to terminate,
stating that the property holds for the system, or returning
a counterexample if the property is violated.

This work introduces a variety of sound and complete assume-
guarantee rules in the setting of Labeled Transition Systems
with blocking communication. The rules are motivated by
the need for automating assume-guarantee reasoning. How-

1The original terminology for this style of reasoning was
rely-guarantee or assumption-commitment; it was intro-
duced for enabling top-down development of concurrent sys-
tems.



ever, in contrast to our previous work, they are symmetric,
meaning that they are based on establishing and discharg-
ing assumptions for both components at the same time. The
remainder of this paper is organized as follows. We first pro-
vide some background in Section 2, followed by some basic
compositional proof rules in Section 3. The framework that
automates these rules is presented in Section 4. Section 5
introduces rules that optimize and extend the basic rules.
Finally, Section 6 presents related work and Section 7 con-
cludes the paper.

2. BACKGROUND
We use Labeled Transition Systems (LTSs) to model the
behavior of communicating components in a concurrent sys-
tem. In this section, we provide background on LTSs and
their associated operators, and also present how properties
are expressed and checked in our framework. We also sum-
marize the learning algorithm that is used to automate our
compositional verification approach.

2.1 Labeled Transition Systems
Let Act be the universal set of observable actions and let
τ denote a local action unobservable to a component’s envi-
ronment. An LTS M is a quadruple 〈Q,αM, δ, q0〉 where:

• Q is a non-empty finite set of states

• αM ⊆ Act is a finite set of observable actions called
the alphabet of M

• δ ⊆ Q× αM ∪ {τ} ×Q is a transition relation

• q0 ∈ Q is the initial state

An LTS M = 〈Q,αM, δ, q0〉 is non-deterministic if it con-
tains τ -transitions or if ∃(q, a, q′), (q, a, q′′) ∈ δ such that
q′ 6= q′′. Otherwise, M is deterministic.

Traces. A trace t of an LTS M is a sequence of observable
actions that M can perform starting at its initial state. For
Σ ⊆ Act, we use t¹Σ to denote the trace obtained by re-
moving from t all occurrences of actions a /∈ Σ. The set of
all traces of M is called the language of M , denoted L (M).
We will freely use the expression “a word t is accepted by
M” to mean that t ∈ L (M). Note that the empty word is
accepted by any LTS.

Parallel Composition. Let M = 〈Q,αM, δ, q0〉 and M ′ =
〈Q′, αM ′, δ′, q0′〉. We say that M transits into M ′ with

action a, denoted M
a
−→ M ′, if and only if (q0, a, q0′) ∈ δ

and αM = αM ′ and δ = δ′.

The parallel composition operator ‖ is a commutative and
associative operator that combines the behavior of two com-
ponents by synchronizing the actions common to their al-
phabets and interleaving the remaining actions.

Let M1 = 〈Q1, αM1, δ1, q01〉 and M2 = 〈Q2, αM2, δ2, q02〉
be two LTSs. Then M1 ‖M2 is an LTS M = 〈Q,αM, δ, q0〉,
where Q = Q1 × Q2, q0 = (q01, q02), αM = αM1 ∪ αM2,
and δ is defined as follows, where a is either an observable
action or τ (note that the symmetric rules are implied by
the fact that the operator is commutative):

M1

a
−→M ′

1, a /∈ αM2

M1 ‖M2

a
−→M ′

1 ‖M2

M1

a
−→M ′

1, M2

a
−→M ′

2, a 6= τ

M1 ‖M2

a
−→M ′

1 ‖M ′

2

Note. L (M1 ‖M2) = {t | t¹αM1 ∈ L (M1) ∧ t¹αM2 ∈
L (M2) ∧ t ∈ (αM1 ∪ αM2)

∗}

Properties and Satisfiability. A property is also defined
as an LTS P , whose language L (P ) defines the set of accept-
able behaviors over αP . An LTS M satisfies P , denoted as
M |= P , if and only if ∀t ∈ L (M).t¹αP ∈ L (P ).

2.2 LTSs and Finite-State Machines
As will be described in section 4, our proof-rules require the
use of the “complement” of an LTS. LTSs are not closed
under complementation (their languages are prefix-closed),
so we need to define here a more general class of finite-state
machines (FSMs) and associated operators for our frame-
work.

An FSM M is a five tuple 〈Q,αM, δ, q0, F 〉 where Q,αM, δ,
and q0 are defined as for LTSs, and F ⊆ Q is a set of ac-
cepting states.

For an FSM M and a word t, we use δ̂(q, t) to denote
the set of states that M can reach after reading t start-
ing at state q. A word t is said to be accepted by an FSM
M = 〈Q,αM, δ, q0, F 〉 if δ̂(q0, t) ∩ F 6= ∅. Note that in the
following sections, the term trace is often used to denote a
word. The language accepted by M , denoted L (M) is the

set {t | δ̂(q0, t) ∩ F 6= ∅}.

For an FSM M = 〈Q,αM, δ, q0, F 〉, we use LTS(M) to de-
note the LTS 〈Q,αM, δ, q0〉 defined by its first four fields.
Note that this transformation does not preserve the lan-
guage of the FSM. On the other hand, an LTS is in fact a
special instance of an FSM, since it can be viewed as an FSM
for which all states are accepting. From now on, whenever
we apply operators between FSMs and LTSs, it is implied
that the LTS is treated as its corresponding FSM.

We call an FSM M deterministic iff LTS(M) is deterministic.

Parallel Composition. Let M1 = 〈Q1, αM1, δ1, q01, F1〉
and M2 = 〈Q2, αM2, δ2, q02, F2〉 be two FSMs. Then M1 ‖
M2 is an FSM M = 〈Q,αM, δ, q0, F 〉, where:

• 〈Q,αM, δ, q0〉 = LTS(M1) ‖ LTS(M2), and

• F = {(s1, s2) ∈ Q1 ×Q2 | s1 ∈ F1 ∧ s2 ∈ F2}.

Note. L (M1 ‖M2) = {t | t¹αM1 ∈ L (M1) ∧ t¹αM2 ∈
L (M2) ∧ t ∈ (αM1 ∪ αM2)

∗}

Satisfiability. For FSMs M and P where αP ⊆ αM , M |=
P if and only if ∀t ∈ L (M).t¹αP ∈ L (P ).

Complementation. The complement of an FSM (or an
LTS) M , denoted coM , is an FSM that accepts the com-
plement of M ’s language. It is constructed by first making



M deterministic, subsequently completing it with respect
to αM , and finally turning all accepting states into non-
accepting ones, and vice-versa. An automaton is complete
with respect to some alphabet if every state has an outgo-
ing transition for each action in the alphabet. Completion
typically introduces a non-accepting state and appropriate
transitions to that state.

2.3 The L* Algorithm
In Section 4, we present a framework that automates com-
positional reasoning using a learning algorithm.

The learning algorithm (L*) used by our approach was de-
veloped by Angluin [2] and later improved by Rivest and
Schapire [22]. L* learns an unknown regular language (U
over an alphabet Σ) and produces a deterministic FSM C
such that L(C) = U . L* works by incrementally producing
a sequence of candidate deterministic FSMs C1, C2, ... con-
verging to C. In order to learn U , L* needs a Teacher to
answer two type of questions. The first type is a member-
ship query, consisting of a string σ ∈ Σ∗; the answer is true
if σ ∈ U , and false otherwise. The second type of question
is a conjecture, i.e. a candidate deterministic FSM C whose
language the algorithm believes to be identical to U . The
answer is true if L (C) = U . Otherwise the Teacher returns
a counterexample, which is a string σ in the symmetric dif-
ference of L (C) and U .

At a higher level, L* creates a table where it incrementally
records whether strings in Σ∗ belong to U . It does this
by making membership queries to the Teacher. At various
stages L* decides to make a conjecture. It constructs a can-
didate automaton C based on the information contained in
the table and asks the Teacher whether the conjecture is
correct. If it is, the algorithm terminates. Otherwise, L*
uses the counterexample returned by the Teacher to extend
the table with strings that witness differences between L (C)
and U .

L* is guaranteed to terminate with a minimal automaton
C for the unknown language U . Moreover, each candidate
deterministic FSM Ci that L* constructs is smallest, in the
sense that any other deterministic FSM consistent with the
table has at least as many states as Ci. The candidates
conjectured by L* strictly increase in size; each candidate is
smaller than the next one, and all incorrect candidates are
smaller than C. Therefore, if C has n states, L* makes at
most n− 1 incorrect conjectures.

3. COMPOSITIONAL PROOF RULES
3.1 Motivation
In our previous work on assumption generation and learning
[12, 8], we used the following basic rule for establishing that
a property P holds for a (closed) parallel composition of two
software components M1 and M2.

Rule 0.

1 : M1 ‖ AM1
|= P

2 : M2 |= AM1

M1 ‖M2 |= P

AM1
denotes an assumption about the environment in which

M1 is placed.

In [12], we present an approach to synthesizing the assump-
tion that a component needs to make about its environment
for a given property to be satisfied. The assumption pro-
duced is the weakest, that is, it restricts the environment
no more and no less than is necessary for the component to
satisfy the property. The automatic generation of weakest
assumptions has direct application to the assume-guarantee
proof. More specifically, it removes the burden of specifying
assumptions manually thus automating this type of reason-
ing.

The algorithm presented in [12] does not compute partial re-
sults, meaning no assumption is obtained if the computation
runs out of memory, which may happen if the state-space
of the component is too large. We address this problem
in [8], where we present a novel framework for performing
assume-guarantee reasoning using the above rule in an incre-
mental and fully automatic fashion. The framework iterates
a process based on gradually learning assumptions. The
learning process is based on queries to component M1 and
on counterexamples obtained by model checking M1 and its
environment, i.e. component M2, alternately. Each iteration
may conclude that the required property is satisfied or vio-
lated in the system analyzed. This process is guaranteed to
terminate; in fact, it converges to an assumption that is nec-
essary and sufficient for the property to hold in the specific
system.

Although sound and complete, Rule 0 is unsatisfactory from
an automation point of view 2 since it is not symmetric. We
thus considered whether some form of “circular”, assume-
guarantee like, rule could be developed. For our framework
the obvious rule for the parallel composition of two pro-
cesses, where the assumption of each process is discharged
by the commitment (or guarantee) of the other, however, is
unsound. Indeed, we demonstrate the unsoundness of the
following rule.

Rule 0m.

1 : M1 ‖ AM1
|= P

2 : M2 ‖ AM2
|= P

3 : P |= AM1

4 : P |= AM2

M1 ‖M2 |= P

Take M1 and M2 each to be the same process M and the
property P as illustrated in Figure 1.

Now take as assumption AM1
the behaviour defined by P ,

similarly for AM2
. Clearly, premises 3 and 4 hold. And

premises 1 and 2 also hold; the parallel composition of M1

with the assumption AM1
constrains its behaviour to be

just that of P , similarly for premise 2. But unfortunately
the conclusion doesn’t hold since, in our framework, M1

composed in parallel with M2 is the behaviour M again;
M clearly violates property P since it allows b to occur

2It is also unsatisfactory from a formal development point
of view!
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Figure 1: Example of process M and property P to

demonstrate unsoundness of Rule 0m

first, rather than ensuring a does. The circular reasoning
to discharge the assumptions in this case was unsound. The
above rule fails for our framework essentially because the
two components may have common erroneous behaviour(as
far as the property is concerned) which is (mis-)ruled out by
assumptions that are overly presumptuous for the particular
composition.

3.2 Basic Proof Rule
In the following we give a symmetric parallel composition
rule and establish its soundness and completeness for our
framework. In Section 4 we then outline how the rule can be
used for automated compositional verification along similar
lines to the approach given in [8].

Rule 1.

1 : M1 ‖ AM1
|= P

2 : M2 ‖ AM2
|= P

3 : L (coAM1
‖ coAM2

) = ∅
M1 ‖M2 |= P

M1, M2, AM1
, AM2

and P are LTSs3 as defined in the previ-
ous section; we require αP ⊆ αM1 ∪αM2, αAM1

⊆ (αM1 ∩
αM2) ∪ αP and αAM2

⊆ (αM1 ∩ αM2) ∪ αP . Informally,
however, the AMi

are postulated environment assumptions
for the components Mi to achieve, respectively, property P .
coAM1

denotes the co-assumption for M1, which is the com-
plement of AM1

. Similarly for coAM2
.

The intuition behind premise 3 stems directly from an un-
derstanding of the failure of Rule 0m; premise 3 ensures that
the assumptions do not both rule out possible, common, vi-
olating behaviour from the components. For example, Rule
0m failed in our example above, because both assumptions
ruled out common behaviour (ba)∗ of M1 and M2, which
violates property P . Premise 3 in Rule 1 is a remedy for
this problem.

Theorem 1. Rule 1 is sound and complete.

Proof. To establish soundness, we show that the premises
together with the negated conclusion leads to a contradic-
tion. Consider a word t for which the conclusion fails, i.e. t
is a trace of M1 ‖ M2 that violates property P , in other

3except for when AM1
, AM2

and P are false, in which case
they are represented as FSMs

words t is not accepted by P . Clearly, by definition of par-
allel composition, t ¹αM1 is accepted by M1. Hence, by
premise 1, the trace t¹αAM1

can not be accepted by AM1
,

i.e. t¹αAM1
is accepted by coAM1

. Similarly, by premise 2,
the trace t¹αAM2

is accepted by coAM2
. By the definition

of parallel composition and the fact that an FSM and its
complement have the same alphabet, t¹(αAM1

∪ AM2
) will

be accepted by coAM1
‖ coAM2

. But premise 3 states that
there are no common words in the co-sets. Hence we have a
contradiction.

Our argument for the completeness of Rule 1 relies upon
the use of weakest environment assumptions that are con-
structed in a similar way to [12]. Let WA(M,P ) denote the
weakest environment for M that will achieve property P .
WA(M,P ) is such that, for any environment A, M ‖ A |= P
iff A |= WA(M,P ).

Lemma 1. coWA(M,P ) is the set of all traces over the
alphabet of WA(M,P ) in the context of which M violates
property P . In other words, this defines the most general
violating environment for (M,P ). A violating environment
for (M,P ) is one that causes M to violate property P in all
circumstances.

To establish completeness, we assume the conclusion of the
rule and show that we can construct assumptions that will
satisfy the premises of the rule. In fact, we construct the
weakest assumptions WAM1

4, resp. WAM2
, for M1, resp.

M2, to achieve P , and substitute them for AM1
and AM2

.
Clearly premises 1 and 2 are satisfied. It remains to show
that premise 3 holds. Again we proceed by proof by contra-
diction. Suppose there is a word t in L (coWAM1

‖ coWAM2
).

By definition of parallel composition, t is accepted by both
coWAM1

and coWAM2
. By Lemma 1, t¹αP violates prop-

erty P . Furthermore, there will exist t1 ∈ L (M1 ‖ coP ) such
that t1¹αt = t, where αt is the alphabet of the assumptions.
Similarly for t2 ∈ L (M2 ‖ coP ). t1 and t2 can then be com-
bined to be a trace t3 of M1 ‖ M2 such that t3¹αt = t. But
if that is so, this contradicts the assumed conclusion that
M1 ‖ M2 |= P , since t violates P . Therefore, there can not
be such a common word t and premise 3 holds.

4. AUTOMATED REASONING
4.1 Framework
For the use of Rule 1 to be justified, the assumptions AM1

and AM2
must be more abstract than the components that

they represent, i.e. M2 and M1 respectively, but also strong
enough for the three steps of the rule to be satisfied. Devel-
oping such assumptions is a non-trivial process. We propose
an iterative approach to automate the application of Rule
1. The approach extends the framework of counterexample-
based learning presented in [8]. As in our previous work
and as supported by the LTSA model checking tool [19], we
assume that both properties and assumptions are described
by deterministic FSMs; this is not a serious limitation since
any non-deterministic FSM can be transformed to a deter-
ministic one via the subset construction.

4Since the context is clear we abbreviate WA(M,P ) as
WAM .



Analysis
Counterexample

Assumption
Learning

|| M11M
i

Assumption
Learning

1M
i

2

i
McoA

1

Model checking

M1 || M2 |= P

strengthenstrengthen

weaken weaken 

true true

false false

true

false

|= P1: A

3: || = O

A Aj
M

|= P2: || MA
2

j
M 2

j
McoA

2

M1 || M2 |= P
+ counterexample

Figure 2: Incremental compositional verification

To obtain appropriate assumptions, our framework applies
the compositional rule in an iterative fashion as illustrated
in Fig. 2. We use a learning algorithm to generate incre-
mentally an assumption for each component, each of which
is strong enough to establish the property P , i.e. to discharge
premises 1 and 2 of Rule 1.

We have seen in the previous section that Rule 1 is guaran-
teed to return conclusive results with the weakest assump-
tions WAM1

, resp. WAM2
, for M1, resp. M2, to achieve

P . We therefore use L* to iteratively learn the traces of
WAM1

, resp. WAM2
. Conjectures are intermediate assump-

tions Ai
M1

, resp. Aj

M2
. As in [8], we use model checking to

implement the Teacher needed by L*.

At each iteration, L* is used to build approximate assump-
tions Ai

M1
and Aj

M2
, based on querying the system and on

the results of the previous iteration. The first two premises
of the compositional rule are then checked. Premise 1 is
checked to determine whether M1 guarantees P in environ-
ments that satisfy Ai

M1
. If the result is false, it means that

this assumption is too weak, i.e. Ai
M1

does not restrict the
environment enough for P to be satisfied. The assumption
therefore needs to be strengthened, which corresponds to re-
moving behaviours from it, with the help of the counterex-
ample produced by checking premise 1. In the context of the
next assumption Ai+1

M1
, component M1 should at least not

exhibit the violating behaviour reflected by this counterex-
ample. Premise 2 is checked in a similar fashion, to obtain
an assumption Aj

M2
such that component M2 guarantees P

in environments that satisfy Aj

M2
.

If both premise 1 and premise 2 hold, it means that Ai
M1

and Aj

M2
are strong enough for the property to be satis-

fied. To complete the proof, premise 3 must be discharged.
If premise 3 holds, then the compositional rule guarantees
that P holds in M1 ‖ M2. If it doesn’t hold, further anal-
ysis is required to identify whether P is indeed violated in
M1 ‖ M2 or whether either Ai

M1
or Aj

M2
are stronger than

necessary. Such analysis is based on the counterexample re-

turned by checking premise 3 and is described in more detail
below. If an assumption is too strong it must be weakened,
i.e. behaviors must be added, in the next iteration. The
result of such weakening will be that at least the behavior
that the counterexample represents will be allowed by the
respective assumption produced at the next iteration. The
new assumption may of course be too weak, and therefore
the entire process must be repeated.

4.2 Counterexample analysis
If premise 3 fails, then we can obtain a counterexample in the
form of a trace t. Similar to [8], we analyse the trace in order
to determine how to proceed. We need to determine whether
the trace t indeed corresponds to a violation in M1||M2.
This is checked by simulating t on Mi||coP , for i = 1, 2.
The following cases arise. (1) If t is a violating trace of both
M1 and M2, then M1 and M2 do indeed have a common bad
trace and therefore do not compose to achieve P . (2) If t is
not a violating trace of M1 or M2 then we use t to weaken
the corresponding assumption(s).

4.3 Discussion
A characteristic of L* that makes it particularly attractive
for our framework is its monotonicity. This means that the
intermediate candidate assumptions that are generated in-
crease in size; each assumption is smaller than the next one,
i.e. |Ai

M1
| ≤ |Ai+1

M1
| ≤ |WAM1

| and |Aj

M2
| ≤ |Aj+1

M2
| ≤

|WAM2
|. However, we should note that there is no mono-

tonicity at the semantic level, i.e. it is not necessarily the
case that L(Ai

M1
) ⊆ L(Ai+1

M1
) or L(Aj

M2
) ⊆ L(Aj+1

M2
) hold.

The iterative process performed by our framework termi-
nates for the following reason. At any iteration, our algo-
rithm returns true or false and terminates, or continues by
providing a counterexample to L*. By the correctness of L*,
we are guaranteed that if it keeps receiving counterexamples,
it will eventually, produce WAM1

and WAM2
respectively.

During this last iteration, premises 1 and 2 will hold by def-
inition of the weakest assumptions. The Teacher will there-
fore check premise 3, which will return either true and termi-
nate, or a counterexample. Since the weakest assumptions
are used, by the completeness proof of Rule 1, we know that
the counterexample analysis will reveal a true error, and
hence the process will terminate.

It is interesting to note that our algorithm may terminate
before the weakest assumptions are constructed via the iter-
ative learning and refinement process. It terminates as soon
as two assumptions have been constructed that are strong
enough to discharge the first two premises but weak enough
for the third premise to produce conclusive results, i.e. to
prove the property or produce a real counterexample; these
assumptions are smaller (in size) than the weakest assump-
tions.

5. VARIATIONS
In Section 3 we established that Rule 1 is sound and com-
plete for our framework and in Section 4 we showed its ap-
plicability for the automated learning approach to composi-
tional verification. However, we need to explore and under-
stand its effectiveness in our automated compositional verifi-



cation approach. In this section we introduce some straight-
forward modifications to the rule, maintaining soundness
and completeness of course, that may remove unnecessary
assumption refinement steps and therefore result in a prob-
able overall improvement in performance.

5.1 First Modification
Our first variation, Rule 1a given below, relaxes the third
premise by requiring that any common “bad” trace, as far
as the assumptions are concerned, satisfies the property P .
The intuition behind this is that the assumptions may well
have been overly restrictive and therefore there may be com-
mon behaviours of M1 and M2, ruled out by the assump-
tions, that do indeed satisfy the property P .

Rule 1a.

1 : M1 ‖ AM1
|= P

2 : M2 ‖ AM2
|= P

3 : L (coAM1
‖ coAM2

) ⊆ L (P )
M1 ‖M2 |= P

Theorem 2. Rule 1a is sound and complete.

Proof. Follows easily from the soundness and complete-
ness proofs for Rule 1.

Rule 1b.

1 : M1 ‖ AM1
|= P

2 : M2 ‖ AM2
|= P

3 : M1 ‖ coAM1
|= AM2

or M2 ‖ coAM2
|= AM1

M1 ‖M2 |= P

In essence, in this variation, premise 3 effectively now checks
whether any trace in the intersection of the co-assumptions
is an illegal behaviour of either component, rather than
it just satisfying the property. Notice that the disjunct
M1 ‖ coAM1

|= AM2
is equivalent to L (coAM1

‖ coAM2
) ⊆

L (M1), similarly for the other disjunct. We’ve used this
particular form for the disjuncts because of similarity with
assumption discharge.

Theorem 3. Rule 1b is sound and complete.

Proof. Similar to proofs of Theorems 1 and 2.

Incorporation of Rules 1a and 1b.
Rule 1a can easily be incorporated into our incremental com-
positional verification framework. Step 3 of Fig. 2 is followed
by an extra step, Step 4, for the case when the intersection
of the co-assumptions is not empty. Step 4 checks whether
the intersection satisfies the given property: if it returns true
then we terminate, otherwise continue with counter-example
analysis and assumption refinement. In order to incorporate
Rule 1b, we simply include a further check to discharge one
of the disjuncts of the rule’s third premise.

Clearly these “optimisation”s may result in the verification
process terminating after fewer learning iterations. On the

other hand there will be some increased overhead in per-
forming the extra checks on each weakening iteration. These
issues will be analysed more fully in our future implementa-
tion of this incremental approach.

5.2 Further Variation
Suppose we are now given components, M1 and M2, with
associated properties, P1 and P2. The following composition
rule can be used to establish that propertyP1 ‖ P2 holds for
M1 ‖M2.

Rule 2.

1 : M1 ‖ AM1
|= P1

2 : M2 ‖ AM2
|= P2

3 : M1 ‖ AM1
|= AM2

4 : M2 ‖ AM2
|= AM1

5 : L (coAM1
‖ coAM2

) = ∅
M1 ‖M2 |= P1 ‖ P2

where we require αP1 ⊆ αM1, αP2 ⊆ αM2, αAM1
⊆ αM1 ∩

αM2 and αAM2
⊆ αM1 ∩ αM2.

Theorem 4. Rule 2 is sound and complete.

Proof. Soundness is established by contradiction, in a
similar way to the soundness results for Rules 1, 1a and 1b.
We outline the steps. We also abuse and simplify notation
by omitting the projections of traces onto the appropriate
alphabets.

We assume the properties P1 and P2 are not contradictory,
i.e. L(P1 ‖ P2) is not empty, or all behaviours are not er-
roneous. Further, assume the conclusion does not hold, i.e.
M1 ‖M2 6|= P1 ‖ P2. There then exists a trace t of M1 ‖M2

s.t. t is in not accepted by P1 ‖ P2. There are three sub-
cases to consider.

1. t not in P1 and t not in P2

2. t not in P1 and t in P2

3. t in P1 and t not in P2

The first case contradicts premise 5. By premise 1, t not in
P1 means t is not a trace of M1 ‖ AM1

. But since t is a
trace of M1 ‖M2 and hence of M1, then t must be accepted
by coAM1

. Similarly, by premise 2, t must be accepted by
coAM2

. But this now contradicts premise 5.

For the second case, and similarly for the third case, we will
show a contradiction of premise 4, resp. premise 3. As for
the first case, by premise 1 if t is not in P1 and t in M1 then
t must be accepted by coAM1

. As t in P2, t is accepted by
M2 ‖ AM2

. Hence, by premise 4, t is in AM1
. But t can’t be

both in AM1
and in coAM1

. The mirror argument follows
for the third case.

Observe that if premises 3 and 4 were not present, as in the
case of rule 1, then soundness is not obtained.



Completeness follows by constructing the weakest assump-
tions WAM1

, resp. WAM2
, for M1, resp. M2, to achieve P1,

resp. P2, and substituting them for AM1
and AM2

. We can
then show that if the rule’s conclusion holds, then so do the
premises.

It is interesting to note that if premises 3 and 4 of Rule
2 are modified to be in the more usual form of guarantee
discharging assumption, i.e. P1 |= AM2

and P2 |= AM1
,

then the rule is not complete.

As was the case with Rule 1, we can weaken premise 5 of
Rule 2 to obtain similar rules to Rule 1a and Rule 1b.

6. HISTORICAL PERSPECTIVE
Over two decades ago, the quest for obtaining sound and
complete compositional program proof systems, in various
frameworks, remained open. The foundational work on proof
systems for concurrent programs, for example [3, 20, 18],
whilst not achieving compositional rules, introduced key no-
tions of meta-level co-operation proofs and non-interference
proofs. These meta-level proofs were carried out using pro-
gram code and intermediate assertions from the proofs of
the sequential processes. Assumption-commitment, or rely-
guarantee, style specifications, in addition to pre- and post-
conditions, were then introduced to capture the essence of
the meta-level co-operation and non-interference proofs, lift-
ing the assumptions that were implicitly made in the sequen-
tial proof outlines to be an explicit part of the specification.
Program proof systems, built over such extended specifi-
cations, were then developed to support the stepwise, or
hierarchical, development of concurrent, or distributed, pro-
grams, see for example [16, 25, 4, 23]. The development of
such compositional proof systems continues to this day and
the interested reader should consult [10] for an extensive and
detailed coverage.

In recent years, there has been a resurgence of interest in
formal techniques, and in particular assume-guarantee rea-
soning, for supporting component-based design: see for ex-
ample [9]. Even though various sound and often complete
proof systems have been developed for this style of reason-
ing, more often than not it is a mental challenge to obtain
the most appropriate assumptions [15]. It is even more of a
challenge to find automated techniques to support this style
of reasoning. The thread modular reasoning underlying the
Calvin tool [11] is one start in this direction. One way of
addressing both the design and verification of large systems
is to use their natural decomposition into components. For-
mal techniques for support of component-based design are
gaining prominence, see for example [9]. In order to reason
formally about components in isolation, some form of as-
sumption (either implicit or explicit) about the interaction
with, or interference from, the environment has to be made.
Even though we have sound and complete reasoning sys-
tems for assume-guarantee reasoning, see for example [16,
21, 6, 14], it is always a mental challenge to obtain the most
appropriate assumption [15].

It is even more of a challenge to find automated techniques
to support this style of reasoning. The thread modular rea-
soning underlying the Calvin tool [11] is one start in this

direction. The Mocha toolkit [1] provides support for mod-
ular verification of components.

The problem of generating an assumption for a component
is similar to the problem of generating component interfaces
to deal with intermediate state explosion in CRA. Several
approaches have been defined for automatically abstract-
ing a component’s environment to obtain interfaces [5, 17].
These approaches do not address the incremental refinement
of interfaces.

Learning in the context of model checking has also been in-
vestigated in [13], but with a different goal. In that work,
the L* Algorithm is used to generate a model of a software
system which can then be fed to a model checker. A confor-
mance checker determines if the model accurately describes
the system.

7. CONCLUSIONS AND FUTURE WORK
Although theoretical frameworks for sound and complete
assumption-commitment reasoning have existed for many
years, their practical impact has been limited because they
involve non-trivial human interaction. In this paper, we
have presented a new set of sound and complete proof rules
for parallel composition that support a fully automated ver-
ification approach based upon such a reasoning style. The
automation approach extends and improves upon our previ-
ous work that introduced a learning algorithm to generate
and refine assumptions based on queries and counterexam-
ples, in an iterative process. The process is guaranteed to
terminate, and return true if a property holds in a system,
and a counterexample otherwise. If memory is insufficient to
reach termination, intermediate assumptions are generated,
which may be useful in approximating the requirements that
a component places on its environment to satisfy certain
properties.

One advantage of our approach is its generality. It relies
on standard features of model checkers, and could therefore
easily be introduced in any such tool. For example, we are
currently in the process of implementing it in the LTSA. The
architecture of our framework is modular, so its components
can easily be substituted by more efficient ones.

We have implemented our framework within the LTSA tool
and over the coming months we will conduct a number of ex-
periments to establish the practical effectiveness of our new
composition rule and its variations. We need to understand
better the various trade-offs between the increased overhead
of additional premise testing and the computational savings
from earlier termination of the overall process. In addi-
tion, we need to investigate known variants of our rules for
N -process compositions, again considering various practical
tradeoffs in implementation terms. Of course, an interesting
challenge will also be to extend the types of properties that
our framework can handle to include liveness, fairness, and
timed properties.
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